Code No.: 14163 AS (B)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A+-- Grade

B.E. IV-Semester Advanced Supplementary Examinations, Aug./Sept.-2023 Optimization Methods (OE-II)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	In minimization of LPP, when the problem is said to be optimal?	2	2	1	1
2.	Define optimization.	2	1	1	1
3.	What is infeasible solution?	2	1	2	1
4.	Explain when dual simplex method is used.	2	1	2	1
5.	Explain the method how to convert minimization problem to maximization in transportation.	2	2	3	1
6.	What is critical path?	2	1	3	1
7.	Show local minima and global minima relatively with figure.	2	1	4	1
8.	Classify single variable NLPP methods.	2	1	4	1
9.	Differentiate single variable and multi variable optimization.	2	1	5	1
10.	List few methods for multivariable optimization of NLPP.	2	1	5	1
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Solve using simplex method Max $Z=3X_1-2X_2$	6	3	1	4
	stc			10.000	
	$X_1 + X_2 \le 5$				
9	$X_2 \le 1$ where $X_1, X_2 \ge 0$				
b)	Explain (a) optimal basic feasible solution (b) Basic feasible solution	2	2	1	4
12. a)	Use Dual simplex method to	6	3	2	4
	Minimize $P = 5X_1 + 6 X_2$ subject to				
	$X_1 + X_2 \ge 2$ $4X_1 + X_2 \ge 4$ and $X_1, X_2 \ge 0$				
b)	Explain (a) multi optimal solution (b) unbounded solution	2	2	2	1
	Find IBFS using Vogels approximation method.	2	2	2	4
	supply	6	3	3	4
	2 3 11 7 6				
	1 0 6 1 1				
					2017

Code No.: 14163 AS (B)

	-	
	,	
	4	

b)	Explain the rules to draw network diagram.	2	2	3	4
14. a)	Find the minimum of $f(x) = X(2X-3)/2$ in the interval (0,1) using Fibonacci method, take n=6.	6	4	4	4
b)	Explain monotonic function with graphs.	2	2	4	4
15. a)	Use Steepest descent method to minimize $f(X_1,X_2) = 4 \cdot X_1^2 + 3X_2^2 - 5X_1X_2 - 8X_1$ starting from $(0,0)$.	6	4	5	4
b)	Explain the two steps involved in Hook Jeeves pattern search method.	2	2	4	4
16. a)	Solve Graphically Max Z=5X ₁ +2X ₂	4	3	1	4
	STC $2X_1 + 4X_2 \le 4$				
	$5 X_1 + 10 X_2 \ge 20$ and $X_1, X_2 \ge 0$				
b)	Find dual for the following LPP $ \begin{array}{c} \text{MAX } Z = 2X_1 - 3X_2 \text{ subject to} \\ 3 \ X_1 + 2 \ X_2 \le 8 \\ 4X_1 - X_2 \le 10 \\ \text{and } X_1, X_2, \ge 0 \end{array} $	4	3	2	4
17.	Answer any <i>two</i> of the following:				
a)	Explain how to convert maximization problem to minimization in transportation with an example.	4	2	3	4
b)	Minimize $f(x) = x^2 + (54/x)$ in the interval (0,5) using exhaustive search method.	4	2	4	4
c)	Minimize $f(X_1, X_2) = -X_1 - X_2 + 6X_1^2 - 6X_1X_2 + 2X_2^2$ using univariate method with starting point (0,)) and the probe length 0.01	4	2	5	4

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	32.5%
iii)	Blooms Taxonomy Level – 3 & 4	47.5%
